skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neustadt, J_M M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The progenitor of SN 2023ixf was an ∼104.8 to $$10^{5.0}\, \text{L}_\odot$$ star (∼9 to $$14\, \text{M}_\odot$$ at birth) obscured by a dusty $$\dot{M} \simeq 10^{-5}\, \text{M}_\odot \rm \, yr^{-1}$$ wind with a visual optical depth of τV ≃ 13. This is required by the progenitor spectral energy distribution, the post-SN X-ray and H α luminosities, and the X-ray column density estimates. In Large Binocular Telescope (LBT) data spanning 5600 to 400 d before the supernova (SN), there is no evidence for optical variability at the level of $$\sim 10^3\, \text{L}_\odot$$ in R band, roughly three times the predicted luminosity of the obscured progenitor. This constrains direct observation of any pre-SN optical outbursts where there are LBT observations. However, models of the effects of any pre-SN outburst on the dusty wind show that an outburst of essentially any duration exceeding ∼5 times the luminosity of the progenitor would have detectable effects on the dust optical depth for decades. While the dust obscuration here is high, all red supergiants have dusty winds, and the destruction (or formation) of dust by even short-lived transients will always have long-term effects on the observed brightness of the star because changes in the dust optical depths after a luminous transient occur very slowly. 
    more » « less